
CASE STUDY:
Siemens Audiology

“Within the code of our presentation layer (mainly ViewModels and XAML
code) we saved about 15% just by using the ViewModelAspect.”

Bernd Hengelein
Software Architect
Siemens Audiology

2

Summary
When the team at Siemens Audiology, a business unit of Siemens Sector
Healthcare, started development on a new WPF implementation for two
of its existing hearing system software applications it chose PostSharp to
deliver a decrease in boilerplate code and software defects – saving them
15% within their presentation layer code.

Team to deliver new WPF implementation
for existing apps
Siemens Audiology, a business unit of Siemens Sector Healthcare,
develops and distributes hearing devices to hearing care professionals
worldwide.

The company’s development team began looking into aspect-oriented
programming and PostSharp as they started development on a new
WPF implementation for two of its existing hearing system software
applications.

“The WPF applications that we are developing are based on the MVVM
(Model-View-ViewModel) pattern for its testability and powerful
data binding capabilities,” says Bernd Hengelein, the software
architect behind Siemens Audiology’s development team. “There are
some repetitive tasks involved when writing ViewModels, such as
implementing INotifyPropertyChanged for each property, and creating
DelegateCommand for each method on the ViewModel that you want to
bind to a UI element.”

Why Siemens Audiology chose PostSharp
Recognizing the importance of removing boilerplate code, the team
began developing PostSharp aspects to do all the repetitive work for
them.

“For standard use cases, PostSharp is very easy to use” says Bernd, “for
instance, implementing a simple tracing aspect is a piece of cake. We
chose PostSharp, rather than alternatives like transparent proxy solutions,
because we wanted to have maximum performance during runtime.”

“We chose PostSharp,
rather than alternatives
like transparent proxy
solutions, because
we wanted to have
maximum performance
during runtime.”

Bernd Hengelein
Software Architect
Siemens Audiology

Siemens Audiology
A leading supplier of hearing devices saves from

having to write INotifyPropertyChanged and creating
ICommand properties needed for data binding.

3

Build and inject custom aspects
into existing applications
Using PostSharp, the Siemens Hearing Instruments team built a number
of aspects to cover some interesting use cases including ViewModel,
Threading, and Localization.

ViewModelAspect
The most complex of all the aspects used by the team, it saves writing
time for developers implementing ViewModels and increases source code
readability by removing boilerplate code. While the aspect was primarily
built to handle INotifyPropertyChanged , ease refactoring and avoid
typos – it also saves the team from having to implement all the delegate
commands in their MVVM implementation.

“The aspect is created automatically for each public void method, and
creates a delegate command together with a new property of type
ICommand that can be bound to the UI,” says Bernd. “This makes it
very easy for us when new ViewModels are developed. We just put our
ViewModelAspect on it, write the public methods – which can be bound
to the UI - and all the INotifyPropertyChanged and command stuff is done
instantly.”

Threading Aspect
The aspect is used by the team to execute long-running business
operations within a separate thread and keeps them focused on
implementing relevant business logic instead of threading issues.

“We have two solutions,” says Bernd, “in the first we add an attribute
to a method and it’s executed in a worker thread. Later we added a
business thread - where all the business operations take place – so we
add it to a method and the aspect takes care of routing the call into the
business thread and executing it. Then, with an additional aspect we call
AsyncCallback, we indicate that it’s a callback method and it’s routed back
to the UI thread using the dispatcher in WPF.”

“Within the code of
our presentation layer
(mainly ViewModels and
XAML code) we saved
about 15% just by using
the ViewModelAspect.”

Bernd Hengelein
Software Architect
Siemens Audiology

4

Localization Aspect
This aspect is part of the company’s localization infrastructure and
relieves developers from manually having to trigger it for complex texts
within ViewModels.“We have to be able to change the language of our
applications during runtime so when a new language is selected the UI
adapts,” says Bernd. “The team has two approaches to the localization
requirement. For static texts, found in the XAML file, we use custom
markup extensions, which are added to the text, and the localization
manager takes care of the localization. Dynamic texts, which are
enhanced from information in the business logic, are handled inside
ViewModels. These more complex texts are built by enhancing a text
snippet with the information from the business logic and, calling on the
localization manager, we simply add LocalizeAspect to a string property.
The aspect takes care of the string you provide with the property then
goes to the localization manager, does the localization, then returns the
localized string.”

PostSharp reduces code duplication and adds
maintenance
“Within the code of our presentation layer (mainly ViewModels and XAML
code) we saved about 15% just by using the ViewModelAspect” says
Bernd.

One of the most cited benefits of AOP and PostSharp is time saved in
reading and writing by the removal of boilerplate code. The team at
Siemens Audiology experienced the time savings first hand.

“Releasing developers from writing boilerplate or infrastructure code
helps my team to complete features faster, “ says Bernd. “While total cost
savings may be difficult to quantify, we definitely saved coding time.
We were relieved from writing the code for INotifyPropertyChanged
and creating ICommand properties needed for data binding. We also
avoided errors/bugs which would have occurred by forgetting to raise the
appropriate PropertyChanged events.”

SharpCrafters s.r.o.
Namesti 14 rijna, 1307/2
150 00 Prague 5
Czech Republic

US: +1 866 576 5361

CZ: +420 270 007 790

www.postsharp.net

info@postsharp.net

